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Focus wavemode propagation in biaxial anisotropic dielectrics
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Abstract. We investigate in the high-frequency limit the propagation of focus wavemodes in the
direction of one of the principal axes of a biaxial anisotropic dielectric and in the neighbourhood of
this axis. We find that two different kinds of waves can propagate and we discuss some implications
of this result.

1. Introduction

We have just proved [1] that two types of high-frequency focus wavemodes, ordinary and
extraordinary, can propagate in uniaxial anisotropic dielectrics. The situation is somewhat
more intricate in biaxial anisotropic dielectrics (crystals), so we only consider the propagation
of high-frequency focus wavemodes in the direction of one of the principal axes of the biaxial
crystal and in the neighbourhood of this axis.

Choosing coordinates along the principal axes of the permittivity tensor, a biaxial
anisotropic dielectric is defined by the constitutive relations

Dj = εjEj j = 1, 2, 3 B = µH (1)

in which the permittivity tensor is a function of the frequency (but not the direction of the
principal axes) whileµ is a constant scalar. The values 1, 2, 3, of the subscriptj correspond
to the componentsx, y, z, respectively.

Using (1), the Maxwell equations curlH = c−1∂tD, curlE = −c−1∂tB become

curlH = c−1∂t (εE) curlE = −µc−1∂tH. (2)

We look for the solutions of equations (2) in the form

E(x, t) = a(x, t)exp[iωχ(x, t)] H(x, t) = b(x, t)exp[iωχ(x, t)] (3)

in which, in agreement with the Courant–Hilbert definition [2] of distortion-free progressing
waves, a property satisfied by focus wavemodes, the phaseχ is a solution of the characteristic
equation of the Maxwell equations [2] that we discuss in the next section.

Letting ∂β denote differentiation with respect to coordinates of space and time, we get
from (3)

∂βE = (∂βa + iωa∂βχ) exp(iωχ) ∂βH = (∂βb + iωb∂bχ) exp(iωχ). (4)

We assumeω is large enough so that one may neglect∂βa and∂βb with respect to iω∂βχ , so

∂βE ≈ iωa∂βχ exp(iωχ) ∂βH ≈ iωb∂βχ exp(iωχ). (4a)

Substituting (3) into (2) and using (4a) gives

b ∧ gradχ = (εa)c−1∂tχ a ∧ gradχ = −µbc−1∂tχ (5)
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and introducing the vectors (defined with respect to the principal axes)

wj = ∂jχ/c−1∂tχ (6)

equations (5) become

b ∧w = (εa) a ∧w = −µb (7)

which is a linear homogeneous systems of six equations for the six unknownsaj , bj , with a
non-trivial solution if its determinant is zero, a condition that will supply the characteristic
equation to be satisfied by the phaseχ in (3).

Remark. Whenχ is a linear function ofx and t , w is a constant vector proportional to
the wavevector and equations (7) are the four-dimensional Fourier transform of the Maxwell
equations.

2. Characteristic equation

Eliminatingb from (7) and introducing the refractive indicesn2
j = εjµ gives

w ∧w ∧ a + (n2a) = 0

and transforming the triple vector product, we obtain withw2 = w2
1 +w2

2 +w2
3

w(w · a)−w2a + (n2a) = 0 (8)

that is

a1 = w1(w · a)(w2 − n2
1)
−1 a2 = w2(w · a)(w2 − n2

2)
−1

a3 = w3(w · a)(w2 − n2
3)
−1. (8a)

Multiplying aj by wj and summing gives the condition to be satisfied byw to obtain a non-
trivial solution of equation (7)

w2
1(w

2 − n2
1)
−1 +w2

2(w
2 − n2

2)
−1 +w2

3(w
2 − n2

3)
−1 = 1 (9)

or multiplying (9) by the product of denominators

w2(w · n)2 − (w1n1)
2(n2

2 + n2
3)− (w2n2)

2(n2
3 + n2

1)− (w3n3)
2(n2

1 + n2
2) + (n1n2n3)

2 = 0.

(9a)

Whenχ is a linear function ofx andt , that is, for harmonic plane waves,w is a constant
vector and equation (9a), sometimes called the dispersion relation, has been the subject of
many important works [3–6] analysing the propagation and refraction of light in crystals. A
somewhat more mathematical discussion is given in [2] where it is only assumed thatχ is
linear in time.

In the general case considered here where no assumption is made onχ , substituting (6) into
(9a) transforms this equation into a first-order partial differential equation of fourth degree (that
is with terms as(∂βχ)4) which is the exact characteristic equation of the Maxwell equations
[2]. So, some approximation is needed to make tractable this partial differential equation.
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3. Solution of the paraxial characteristic equation

As said in the introduction, we investigate the propagation of focus wavemodes in the
direction of a principal axis, hereoz, and we are interested in the electromagnetic field in
the neighbourhood of this axis. Strictly speaking, we assumew2

1 � w2
3, w2

2 � w2
3 so that

we may neglect the terms of orderw−j3 for j > 2, that we note 0(w−j3 ). Then, equation (9a)
reduces to

w2
3n

2
3 +w2

1(n
2
1 + n2

3) +w2
2(n

2
3 + n2

2)− n2
3(n

2
1 + n2

2) = 0 + 0(w−2
3 ). (10)

Substituting (6) into (10) gives the paraxial characteristic equation for propagation alongoz

m−2
1 (∂xχ)

2 +m−2
2 (∂yχ)

2 +m−2
3 (∂zχ)

2 − c−2(∂tχ)
2 = 0 (11)

m−2
1 = n−2

3 (n2
1 + n2

3)(n
2
1 + n2

2)
−1 m−2

2 = n−2
3 (n2

2 + n2
3)(n

2
1 + n2

2)
−1

m−2
3 = (n2

1 + n2
2)
−1. (11a)

Among the many solutions of equation (11), we consider the two following ones

χ = ct −m3z−D−1M2 M2 = m2
1x

2 +m2
2y

2 D = a + ct +m3z (12)

χ◦ = ct −m3z−D−1N2 N = m1x cosu +m2y sinu. (12a)

In D andN , a, u are arbitrary parameters. To prove that (12) and (12a) are solutions of (11),
one has just to note that

∂xχ = −2m2
1xD

−1 ∂yχ = −2m2
2yD

−1 (13a)

∂zχ = −m3(1−M2D−2) c−1∂tχ = 1 +M2D−2 (13b)

∂xχ
◦ = −2m1x cosuND−1 ∂yχ

◦ = −2m2y sinuND−1 (14a)

∂zχ
◦ = −m3(1−N2D−2) c−1∂tχ

◦ = 1 +N2D−2 (14b)

and to substitute (13) and (14) into (11).
The phase (12) is the generalization to anisotropic dielectrics of that of focus wavemodes

[7, 8] propagating in free space while foru = 0, π/2, the phase (12a) is that of TE and TM
electromagnetic components of focus wavemodes [1].

Since condition (9) is satisfied (to the order 0(w−2
3 )) with (12) and (12a), we may solve

equations (7) in terms of one of the components of the vectorsa, b. So, to get electromagnetic
focus wavemodes, one has only to take for this component a scalar focus wavemode solution
of the wave equation having (11) as the characteristic equation.

4. High-frequency paraxial focus wavemodes

The paraxial wave equation corresponding to the characteristic equation (11) is [2]

(m−2
1 ∂2

x +m−2
2 ∂2

y +m−2
3 ∂2

z − c−2∂2
t )ψ = 0 (15)

and we prove in the appendix that equation (15) has solutions with phases (12) and (12a)

ψ = D−1 exp(iωχ) ψ◦ = D−1/2 exp(iωχ◦). (16)

Then, we identify the componentEz of the electric field successively withψ andψ◦ so that,
according to (3), thez-component of vectora is

a3 = D−1 a◦3 = D−1/2 (17)
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while to get thex andy-components ofa, one has just to use the first relations (8a)

(w2
2 +w2

3 − n2
1)− w1w2a2 = w1w3a3

−w1w2a1 + (w2
1 +w2

3 − n2
2) = w2w3a3. (18)

This system is easy to solve and to the order 0(w−2
3 ) we get using (17)

a1 = D−1w1/w3 a2 = D−1w2/w3

a◦1 = D−1/2w◦1/w
◦
3 a◦2 = D−1/2w◦2/w

◦
3. (19)

Finally, to get the amplitudesbj , b◦j , one has just to substitute the previous expressions of
aj anda◦j into the second equation (7). So according to (3), this achieves determination of
the high-frequency paraxial focus wavemode propagation along the third principal axis of the
anisotropic dielectric. However, to be complete, one has still to give the expressions forwj
andw◦j . From (13a, b), we get at once

w1 = −2m2
1xD(D

2 +M2)−1 w2 = −2m2
2yD(D

2 +M2)−1

w3 = −m3(D
2 −M2)(D2 +M2)−1 (20a)

and similarly form (14a, b)

w1 = −2m1 cosuND(D2 +N2)−1 w2 = −2m2 sinuND(D2 +N2)−1

w3 = −m3(D
2 −N2)(D2 +N2)−1. (20b)

In addition, substituting (20a, b) into the inequalitiesw2
1 � w2

3,w2
2 � w2

3 delimits the regions
of spacetime in which the paraxial approximation holds valid.

Comparison of the functionsM2 andN2 in the phaseχ andχ◦ suggests naming the
corresponding solutions symmetric and asymmetric transverse focus wavemodes. Although
only the first are mentioned (only in the case of isotropic media) in the literature, the second
present the advantage of less attenuation (inD−1/2).

5. Discussion

It was shown in [1] that discarding the high-frequency approximation makes it very difficult to
calculate analytical expressions. However, can we dispense with the paraxial approximation
which limits calculations to a region not too far from the direction of propagation? To obtain
an exact solution of the characteristic equation (9a) would be an important achievement.

The propagation of harmonic plane waves in anisotropic dielectrics generates a great
variety of physical processes such as double refraction, conical refraction etc of utmost
importance in optics (think, for instance, of the Kerr and Pockels effects) and thoroughly
analysed in the past [2–6] through discussions of: polarization, phase velocity, normal surfaces,
ray surfaces and so on. Part of this analysis may be generalized to waves with arbitrary phases
provided they are linear in time [2], as Gaussian beams. So, it is a bit frustrating to work
with focus wavemodes since one has only to be content that they can propagate at least in
some direction. Nevertheless, this last possibility could rejuvenate some important problems
conventionally tackled with plane waves as, for instance, the behaviour of plasmas excited by
electromagnetic waves.

So, in order to know the way that focus wavemodes propagate in different media will not
be a futile exercise as soon as one is able to generate [1] physical focus wavemodes, as already
realized in acoustics [9], with the potential of being a good approximation of mathematical
focus wavemodes in bounded regions of spacetime.
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Appendix

To prove that (16) is a solution of equation (15), we first use (13a) then

∂xψ = −2iωm2
1xD

−1ψ ∂yψ = −2iωm2
2yD

−1ψ (A.1)

and a simple calculation gives

∂2
xψ = −(2iωm2

1D
−1 + 4ω2m4

1x
2D−2)ψ ∂2

yψ = −(2iωm2
2D
−1 + 4ω2m4

2y
2D−2)ψ.

(A.2)

Similarly from (13b)

∂zψ = −m3[D−1− iω(1−M2D−2)]ψ

c−1∂tψ = [D−1 + iω(1 +M2D−2)]ψ (A.3)

and

∂2
z ψ = m2

3[2D−2 + 2iωD−1− 4iωD−3M2 − ω2(1−M2D2)]ψ

c−2∂2
t ψ = [2D−2 − 2iωD−1− 4iωD−3M2 − ω2(1 +M2D−2)]ψ. (A.4)

Finally from (A.2) and (A.4)

(m−2
3 ∂2

z − c−2∂2
t )ψ = [4iωD−1 + 4ω2M2D−2)ψ = −(m−2

1 ∂2
x +m−2

2 ∂2
y )ψ (A.5)

which is exactly equation (15). We proceed similarly for the second solution. From (14a)

∂xψ
◦ = −2iωm1 cosuND−1ψ◦ ∂yψ

◦ = −2iωm2 sinuND−1ψ◦. (A.6)

In this case also, a simple calculation gives

∂2
xψ
◦ = −m2

1[2iωD−1 cos2 u + 4ω2N2D−2 cos2 u]ψ◦

∂2
yψ
◦ = −m2

2[2iωD−1 sin2 u + 4ω2N2D−2 sin2 u]ψ. (A.7)

Similarly form (14b)

∂zψ
◦ = −m3[1/2D + iω(1−N2D−2)]ψ◦

c−1∂tψ
◦ = −[1/2D − iω(1−N2D−2)]ψ◦ (A.8)

∂2
z ψ
◦ = m2

3[3/4D2 − 3iωD−3N2 + iωD−1− ω2(1−N2D−2)]ψ◦

c−2∂2
t ψ
◦ = [3/4D2 − 3iωD−3N2 − iωD−1ω2(1 +N2D−2)]ψ◦ (A.9)

and according to (A.7) and (A.9)

m−2
3 ∂−2

z ψ◦ − c−2∂2
t ψ
◦ = (2iωD−1 + 4ω2N2D−2)ψ◦ = −(m2

1∂
2
x +m2

2∂
2
y )ψ

◦ (A.10)

which is equation (15).
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